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Advances in Highly Constrained Multi-Phase

Trajectory Generation using the General

Pseudospectral Optimization Software GPOPS

Shawn L. Rexius∗ Tiffany E. Rexius†Timothy R. Jorris‡

Edwards AFB, CA, 93524, USA

Anil V. Rao§

University of Florida, Gainesville, FL, 32611, USA

Recent events in hypersonic glide vehicle programs have necessitated a new approach to
examine possible flight test trajectories to include new constraints on optimal trajectory
generation. Aircraft stability, combined thermo-structural loading, and vehicle ablation
are all important considerations for hypersonic vehicle flight; optimal trajectory genera-
tion should account for these complex constraints. A collaborative effort was undertaken
by the Air Force Research Laboratory Aerospace Systems Directorate and the 412th Test
Wing at Edwards Air Force Base to analyze possible optimal control solutions that satisfy
these constraints. A three-stage booster aerodynamic and propulsion model and a hy-
personic glide vehicle aerodynamic and ablation model were implemented in the General
Pseudospectral Optimization Software (GPOPS). The resulting optimal control problem
models booster launch through re-entry vehicle impact and incorporates multiple complex
constraints including stagnation heating, ablation, no-fly zones, aircraft stability, dynamic
pressure, time-rate of change of flight path angle, loads and a terminal phase target. Fur-
thermore, the optimal control problem uses derived events as guidance mode or booster
stage linkages; including range to target, range from launch site, vehicle loads, altitudes,
dynamic pressure and time rate of change of altitude. The optimal control variables are
specified to be the guidance variable derivatives; this allows for constraining attitude rates
in a translational (point mass) problem. GPOPS is shown to be capable of analyzing highly
constrained, multiple-phase optimal control problems using complex vehicle models and
flexible enough to incorporate new constraints quickly allowing for exploration of new
guidance methodologies.

Nomenclature

A axial force
ax axial acceleration
az normal acceleration
CA axial force coefficient
Clβ rolling moment coefficient due to sideslip
Clδ rolling moment coefficient due to aileron
CN normal force coefficient
Cnβ yawing moment coefficient due to sideslip
Cnδ yawning moment coefficient due to aileron
D aerodynamic drag force
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f generic function
g acceleration due to gravity
h altitude
L aerodynamic lift force
L Lagrange cost
m vehicle mass
M Mach number
n number of coefficients in polynomial regression
p highest order of polynomial regression
Q dynamic pressure
R vehicle range
RE Earth radius
r vehicle distance from center of the Earth
Sfac S-Factor
T propulsive force
V Earth-relative velocity
Vc orbital velocity at the surface of the Earth
α angle of attack
β angle of sideslip
γ flight path angle
∆ difference operator
δe elevator deflection angle
δa aileron deflection angle
ε bearing angle
θ longitude
λ latitude
λ̄ mean latitude
µ Earth gravitational constant
ρ atmospheric density
ρ0 sea-level density
σ bank angle
φ Mayer cost
ψ heading angle
ωe Earth rotation rate

I. Introduction

Recent events in hypersonic glide vehicle flight testing have proven hypersonic gliding flight to be a highly
constrained problem. Combined aerodynamic and thermodynamic loading, advanced material uncertainties,
vehicle stability and control, and thermal protection system constraints have become important consider-
ations when designing trajectories for long range hypersonic glide. Furthermore, geo-political implications
and range safety concerns may dictate no-fly zones as additional constraints. These classes of problems are
suitable for pseudospectral optimal control because of the highly constrained solution space and the need
to assess the effectiveness of various guidance methodologies; also, pseudospectral methods are useful for
multiple-phase problems.

Previously, it was shown that pseudospectral optimal control was suitable for Common Aero Vehicle
(CAV) re-entry trajectories constrained by waypoints and no-fly zones.1–3 This work was then expanded from
the purely analytical cases to model a CAV in flight about a spherical rotating Earth.4 Further expansion
of the CAV re-entry problem added aerodynamic heating path constraints.5 Lately, pseudospectral methods
have shown their versatility for hypersonic flight testing by finding optimal control solutions considering
range safety implications.6

Common to the above work is the use of the General Pseudospectral Optimization Software (GPOPS)
analysis progam7–11 that has been adapted by the 412th Test Wing and the Air Force Research Laboratory
at Edwards AFB specifically for solving optimal control problems involving hypersonic and space-access
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vehicles. GPOPS is a MATLAB-based hp-adaptive pseudospectral optimization software. GPOPS utilizes
a Radau Pseudospectral Method (RPM); the collocation points are defined by the roots of Legendre-Gauss-
Radau (LGR) functions.9 GPOPS also automatically refines the “mesh” by subdividing time segments of
the state and control solution to arrive at a denser solution without using higher-order polynomials and their
concerns; this is called an hp-adaptive mesh. GPOPS’ MATLAB implementation allows the user to include
any number of new constraints, events, links, costs and even equations of motion and take advantage of the
ease of debugging and matrix operations within MATLAB.

The work presented for this effort is the implementation of multiple complex models representing a three-
stage booster and a hypersonic glide vehicle (HGV) similar to the CAV within the GPOPS framework. The
resulting optimal control problem has variable events for stage and fairing separation, payload separation,
and re-entry guidance mode phases. Furthermore, complex constraints are imposed on the booster and re-
entry problems; to include aerodynamic, aero-thermodynamic, aircraft stability, vehicle loads and multiple
no-fly zones. Finally, various guidance methodologies are explored for use with the HGV. It is shown that
GPOPS can produce optimal control solutions for these types of problems.

II. Methodology

This section focuses on the implementation of various models into the GPOPS architecture; the booster
model, the HGV model, the various Earth models and equations of motion are discussed. Additionally, the
limits, constraints, phases, and cost function for the optimal control problem are discussed.

II.A. Booster Model

A three stage launch vehicle with solid rocket motors was modeled for the booster as seen in Figure 1. The

Figure 1. Booster Stack with HGV.

booster consisted of three stages with a fairing separation occurring during the third stage. After fairing
separation the vehicle coasted until the correct conditions were met and the HGV separated. Thrust and
mass flow rate for all stages were from table look-ups based on time; thrust was adjusted for altitude utilizing
a custom atmosphere. Throttling was applied to the third stage of the booster at a specified time. The
aerodynamic model is a two-dimensional table look-up for axial force coefficent as a function of Mach number
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and angle of attack and changes with each vehicle stage, Eq (1):

CA = f(M,α) (1)

For this booster model the normal force coefficient (CN ) was assumed to be zero. The normal force
to the booster is generally small enough for this to be a valid assumption. The controls to be optimized
were the angle of attack, sideslip, and bank angle. Rate limits were applied to these controls to ensure
feasible solutions based on vehicle maneuvering capability. Significantly, using this method agreed with
higher degrees of freedom simulations.

The booster model was broken into four separate phases due to discontinuities in mass. The dry mass
of the stage was ejected after stage burnout resulting in a discontinuity in the state of mass necessitating
a phase break. This happened between each phase as well as for fairing separation which was only able to
occur above a certain altitude and below a specified acceleration.

II.B. Hypersonic Glide Vehicle Model

The payload for the booster was modeled as a HGV similar to the CAV.1–5 However, the CAV model
presented in previous work utilized a simple drag polar with a constant lift coefficient that approximates
Mach-independent maximum glide range flight.3 The aerodynamic model in this work is a more represen-
tative vehicle model originally used for explicit simulation as a four-dimensional table-look-up as a function
of Mach number (M ), altitude (h), angle of attack (α), and elevator deflection (δe) Eq (2):

CA, CN = f(M,h, α, δe) (2)

Furthermore, each force coefficient has two sets of tables for laminar and turbulent boundary layers.
Boundary layer transition was based on Reynolds number and angle of attack and linearly faired between
laminar and turbulent. For computational speed and ability to utilize GPOPS’ automatic differentiation
option, the laminar and turbulent four-dimensional tables were fit to polynomials at an approximate trim
elevator deflection, Eq (3):

CA, CN = C0 + C1M + C2h+ C3α+ C4M
2 + C5h

2 + C6α
2 + . . . Cn−2M

p + Cn−1h
p + Cnα

p (3)

The polynomial fit was accomplished by fitting a “response surface” or regression to the tabular data
using a method similar to Waddell.12 It is important to note that in some cases multiple surfaces were fit
to the tabular data for a single table to avoid higher-order interpolation errors. In those cases the multiple
surfaces were fit together using a linear fairing.

An important consideration for hypersonic glide vehicles is aircraft stability and control. A measure of
performance of aircraft lateral-directional stability and control is the Lateral Control Departure Parameter
(LCDP);13 this is similar to the S-Factor (Sfac) parameter used in this work, Eq (4):

Sfac = 1− ClβCnδ
CnβClδ

(4)

The above S-Factor calculation is applicable for aircraft that have no yaw control; it is an indicator of
departure resistance with values greater than zero.14 Instead of modeling four variables on the right hand
side of Eq (4) the composite value for Sfac, the left hand side of Eq (4) , was modeled. To that end,
a response surface for S-Factor - the left hand side of Eq (4) - was fit for laminar and turbulent tabular
models. In addition to elevator deflection, derivatives due to aileron were also a function of aileron deflection.
Aileron deflection was chosen conservatively and held as a constant for the fit in addition to the same constant
elevator deflection as in the axial and normal force coefficients. In this way a lateral-directional stability
constraint was added to the aircraft model without modeling the lateral-directional dynamics.

Another important consideration for re-entry vehicles is ablation or recession; the trajectory flown is
constrained by ablation limits. In this study nosetip ablation was considered; an empirical equation is used
to calculate the rate-of-change of nosetip ablation as a function of atmospheric density (ρ) and velocity (V ),
Eq (5):

Ṙabl = Bρk1V k2 (5)

Note that wing leading edge recession will generally be of greater importance than nosetip; for this study
the nosetip recession is used in a conservative fashion to stand for recession in general. More detailed studies
must consider more than nosetip recession for long range hypersonic glide.
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II.C. Equations of Motion and Earth models

The equations of motion are for translational flight about a rotating spherical earth. These equations are
derived in Vinh15 and have been modified to include sideslip angle, Eqs (6-11):

ṙ =V sin γ (6)

θ̇ =
V cos γ sinψ

r cosλ
(7)

λ̇ =
V cos γ cosψ

r
(8)

V̇ =
1

m
(T cosα cosβ −D cosβ)− g sin γ + ω2

Er cosλ (sin γ cosλ− cos γ cosψ sinλ) (9)

γ̇ =
T

mV
(cosα sinβ sinσ + sinα cosσ) +

1

mV
(L cosσ −D sinσ sinβ) +

V

r
cos γ − g

V
cos γ

+ 2ωE sinψ cosλ+
ω2
E

V
r cosλ(cos γ cosλ+ sin γ cosψ sinλ) (10)

ψ̇ =
−T

mV cos γ
(cosα sinβ cosσ + sinα sinσ)− 1

mV cos γ
(L sinσ −D cosσ sinβ) +

V

r
cos γ sinψ tanλ

− 2ωE(cosλ tan γ cosψ − sinλ) +
ω2
E

V cos γ
r sinλ cosλ sinψ (11)

In Equations (6-11) above, the sideslip angle (β) and thrust (T ) were assumed to be zero for the HGV
portion of the optimal control problem; however, the booster uses sideslip in addition to angle of attack (α)
and bank angle (σ). The Earth’s gravitational field was modeled by the following equation, Eq. (12):

g =
µm

r2
(12)

The Earth’s atmosphere was modeled with a 1962 standard atmosphere16 for the HGV and a custom
atmosphere table for the booster; this was used to be consistent with the aforementioned explicit simulation.

II.D. Phases, Constraints and Limits

The optimal control problem was subdivided into multiple phases to account for booster stages, payload
fairing separation, payload separation, and re-entry guidance phases. The booster modeled was a three-stage
launch vehicle with a payload fairing and a fourth stage with no propulsion that separates the hypersonic
glide vehicle shown in Figure 1.

Optimal control problems in GPOPS are constrained by the equations of motion and user-defined con-
straints enforced throughout the phase called path constraints. Furthermore, GPOPS problem phases can
have user-defined constraints at the start and end points of the phase called events; user-defined constraints
that exist between phases are called linkages.

The booster has three controls, angle of attack, bank angle, and sideslip angle. In order to more closely
approximate vehicle dynamics, the controls for the optimal control problem are the angle of attack, bank
angle, and sideslip angle derivatives. In this way, the rate of change of control can be constrained. The boost
phases are shown in Figure 2.
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Figure 2. Booster Optimal Control Problem Phases.

Booster phase 1 starts 5 seconds after liftoff to avoid numerical difficulties in the equations of motion at
zero velocity and ends at stage 1 burnout; as the booster vehicle dynamics are well understood this is a valid
starting point. In booster phase 1, there is a path constraint of “Q-Alpha” (Q ·α), a measure of aerodynamic
loading that leads to bending of the launch vehicle. Q-Alpha is defined by the following equation, Eq (13):

Q · α =
αρV 2

2
(13)

In the above equation, angle of attack (α) is in degrees and dynamic pressure (1/2ρV 2) is in units of pounds
per square foot. Booster phase 1 also has an event constraint; the stage separation must occur within a
certain range of Q-Alpha. The stage separations were modeled as an instantaneous mass change with no
dynamic effects on the launch vehicle.

Booster phase 2 starts at stage 2 ignition and ends at stage 2 separation; phase 2 also has a path constraint
of Q-Alpha. Booster phase 3 starts at stage 3 ignition and ends at fairing separation; there are no path
constraints in phase 3. The stage separation event must occur within a certain range of axial acceleration
and altitude. Axial acceleration for the vehicle is defined by the following equation as a function of booster
thrust (T ), axial force (A) and mass (m),Eq (14):

ax =
T −A
m

(14)

Booster phase 4 starts at fairing separation and ends at HGV separation; there are no path constraints
in phase 4. It is assumed that the time between fairing separation and HGV separation must be greater
than a minimum time for navigation subsystem acquisition. Stage 3 separation must occur after the thrust
tail-off reaches a certain point; therefore the event constraint in phase 4 is the stage 3 thrust level. Glide
vehicle separation must occur within a certain altitude and flight path angle range.

The HGV has two controls, angle of attack and bank angle. As with the booster, the controls specified
in the optimal control problem are the angle of attack and bank angle derivatives. There are six glide phases
from booster separation to impact shown in Figure 3.
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Figure 3. HGV Optimal Control Problem Phases.

Throughout the entire HGV trajectory, Sfac is applied as a path constraint; as mentioned in the previous
section Sfac must be above zero for the vehicle to avoid departure of controlled flight. Cumulative vehicle
nose recession is applied as a constraint to the entire trajectory.

HGV phase 1 starts at glide vehicle separation; this phase is called the exo-atmospheric coast and ends
when there is sufficient lift on the glide vehicle to zero the flight path angle. The separation point (initial
phase point) must be within a certain range from the launch site and the final phase point must have a flight
path angle of zero.

HGV phase 2 starts at the end of phase 1 and ends once the HGV has entered the proper pseudo-
equilibrium glide condition. The proper pseudo-equilibrium glide is defined for this problem as an altitude
and a flight path angle. An event was defined at the end of this phase as the miss distance for the desired
altitude; the desired altitude is a parameter in GPOPS that the optimal control problem selects as part of
the optimization.

HGV phases 3 through 5 are glide phases and comprise the majority of the HGV trajectory. The HGV
glide has been broken into three separate phases in order to experiment with different options for HGV
guidance and a variety of guidance variables and methodologies. The HGV glide phase ends at the interface
to the terminal guidance mode switch; this is a range to impact location, altitude, velocity, and flight path
angle. The range to impact location is estimated on the spherical earth from the law of cosines, Eq (15):

R = RE cos−1(sinλ1 sinλ2 + cosλ1 cosλ2 cos(θ1 − θ2)) (15)

The numbered subscripts in Eq (15) denote the vehicles and the targets position, respectively. To ensure
that the HGV was pointing at the impact location at the end of the glide, a final event constraint was used;
the HGV heading was constrained to match the HGV bearing to the impact location. The bearing was
estimated by the following equation; a local flat-earth approximation corrected for latitude, Eq (16):

ε = tan−1

(
∆λ

∆θ

)
(16)

Because the HGV is relatively close to the impact location at the end of the glide, the local-flat Earth
approximation for bearing was decided to be appropriate.

The final HGV phase is the end of the glide to the impact at the impact location. The path constraints
in this phase are normal and axial acceleration. The impact must be within a certain flight path angle,
velocity and range to the impact location.
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II.E. Cost Function

The cost, or objective, function in GPOPS is defined in two parts; an endpoint cost, and an integrated cost,
Eq (17):

J = φ+

∫
L (17)

In Eq (17), The endpoint cost (φ) is called the Mayer cost, and the integrand (L) is called the Lagrange
cost.

The cost function for the optimal control problem was chosen to minimize the stagnation heating at the
end of HGV phase 1, that is, the maximum heating experienced by the HGV prior to the terminal phase of
flight. The stagnation heating rate is given by the Chapman equation,17 Eq (18):

q̇s = Q̂

(
ρ

ρ0

)0.5(
V

VC

)3.15

(18)

In Eq (18), the constant (Q̂) is a function of the radius of the nose. The above cost function is modeled
as a Mayer cost; the Lagrange cost is zero. Note that this cost function is applied to the endpoint of one
phases; In GPOPS, multiple endpoint or integral cost functions may be used; but for this work only one
was needed.

III. Results

The methodology described in the previous section was implemented and verified against the explicit
simulations from which the models were taken. Following verification, the GPOPS combined booster and
HGV optimal control problem was used to develop trajectories. The effect of the chosen cost function was
examined along with the effects of the constraints discussed in the methodology section. Furthermore, the
effectiveness of different glide phase guidance methods were examined.

Recall that the cost function for the optimal control problem is to minimize stagnation heating. The first
set of results show the comparison between the original trajectory and the remediated GPOPS trajectory.
Figure 4 shows the difference in boost and exo-atmospheric altitude profiles. In order to minimize the
stagnation heating, the optimal solution has significantly changed the boost profile in order to reduce the
apogee altitude by approximately 30 percent. Figure 5 displays that in addition to reducing the apogee
altitude, the optimal solution increases the booster velocity and lowers the separation flight path angle. Also
with regard to the change in booster controls, Figure 6; the optimal solution uses a different combination of
angle of attack and sideslip to change the boost profile.

During the exo-atmospheric glide phase, the HGV angle of attack is raised until the stability factor (Sfac)
path constraint is a concern, Figure 7. Recall that the constraint is for the stability factor to remain positive;
the more positive, the better. Note that as the stability path constraint becomes a concern to the optimal
control problem, the HGV angle of attack is lowered to the extent allowable to satisfy the path constraint.
The Sfac path constraint and the cost function are in opposition during the exo-atmospheric glide phase;
totally minimizing stagnation heating at perigee would give an optimal control of higher angle of attack
which in turn would violate the stability path constraint. The effect of the changes in booster and re-entry
profiles is seen in Figure 8; the GPOPS optimal solution lowers the perigee heat flux rate by approximately
20 percent.
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Figure 4. Booster and HGV Re-entry Altitude Profile Comparison.
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Figure 5. Booster Velocity and Flight Path Angle Comparison.
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Figure 6. Booster Controls Comparison.
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Figure 7. HGV Angle of Attack and Stability Factor Comparison.
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Figure 8. HGV Stagnation Heat Flux Rate Comparison.

In addition to using the GPOPS booster and HGV optimal control problem to analyze the effect of
minimizing stagnation heating at the perigee of the HGV re-entry, no-fly-zones were also used to constrain the
flight path of the HGV and booster. The effect of using a no-fly-zone is shown in Figure 9; the unconstrained
trajectory traverses through the no-fly-zone on the original optimal solution and the constrained trajectory
shifts the ground-track to a new optimal solution satisfying the path constraint.
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Figure 9. Effect of No-Fly-Zone Path Constraint on HGV Ground-Track.

An endpoint constraint was defined as nose-tip ablation; the allowable nose-tip ablation was constrained
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conservatively for safety margin. Figure 10 shows the effect of the ablation constraint on the re-entry
velocity profile; the constrained trajectory essentially flies an entirely different re-entry by reducing the
insertion velocity. Note that in Figure 10 the scale time starts at booster ignition but only the re-entry
velocity profiles are displayed. The ablation factor profiles are shown in Figure 11. The rate of ablation
is initially increased but the final integrated value of ablation is significantly less than the unconstrained
trajectory, thus satisfying the new constraint in addition to the previously mentioned constraints.
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Figure 10. Effect of Ablation Endpoint Constraint on Re-entry Velocity Profile.
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Figure 11. Ablation Factor Comparison.
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More recently, the GPOPS combined booster and HGV optimal control problem was used to examine the
effect of different guidance methodologies in the glide phase with all other constraints still applied; recession,
heat rate, stability, etc. The overall altitude profiles of three such methodologies are seen in Figure 12.
Guidance 1 uses multiple semi-constant glide slopes during the glide phases. Guidance 2 allows the final
glide sub-phase to perform a pop-up maneuver by un-constraining the constant flight path angle in that
phase. Guidance 3 allows for more of a phugoid motion by un-constraining the flight path angle during all
of the glide phases.

The re-entry angle of attack and flight path angles of the three guidance methodologies are shown in
Figure 13. The two options that un-constrain the gliding flight path angle exhibit more movement in angle of
attack and more significant longitudinal maneuvering near the terminal phase of the re-entry. Interestingly,
the Guidance 1 methodology that enforces a more constant flight path exhibits a steeper initial re-entry.

The aero-thermodynamic effect of the different guidance methodologies is shown in Figure 14; There is
a consequence for each guidance methodology. The Guidance 1 option has higher stagnation heating at the
perigee but accumulates less heat flux overall; this is favorable for nosetip recession. The Guidance 2 option
may be the worst option for aero-thermodynamic constraints as it has higher heating at the perigee and the
terminal phase. The Guidance 3 option has the least heating at the perigee and a slower growth of nose
ablation but a larger integral heating and a spike of heat flux at the terminal phase. Of the three options
with respect to aero-thermodynamic factors, the Guidance 3 option may be the most acceptable overall; the
perigee heat flux rate is very important for hypersonic glide vehicles. The aero-thermodynamic consequences
of each guidance methodology is shown as an example; the selection of a particular guidance methodology
will certainly depend upon many factors. For a re-entry vehicle such as an HGV, to first order the most
important considerations have to do with aerodynamic heating.
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Figure 12. Altitude Profiles of Guidance Methodolgy Options.
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Figure 13. Angle of Attack and Flight Path Angle Profiles for Guidance Methodologies.
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Figure 14. Ablation Factor and Heat Flux Rate Comparison for Guidance Methodologies.

A few challenges in producing results are worth discussion; the implementation of this type of problem
revealed many aspects of optimal control problems for further study. First, implementing complex aerody-
namic or other model tables can result in models that do not necessarily have smooth derivatives; when the
derivatives are not smooth, the solver has a more difficult time finding an optimal solution. This was evident
in the booster dynamics since they had no regression fits.

Secondly, GPOPS method for auto-scaling the variables and constraints was found to be very sensitive
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to small changes in the state, path, and endpoint constraint limits; the difference between a fully optimized
solution within the specified tolerances and a solution that did not solve satisfactorily was found to be very
small in some cases. For complex problems like the one considered in this work, a manual scaling scheme
may be more acceptable. Furthermore, it was discovered that large problems like this one (10 phases with
10 states, 2-3 controls and numerous path constraints, endpoint constraints, etc.) require a large number of
grid points or collocation points in the optimal solution which can lead to the slow processing of optimal
solutions.

Another challenge for the optimal solution was the complexity of the thrust and mass flow rate tables for
the booster; because the function was not smooth with time it required a high collocation point density and
thus a higher-order Lagrange polynomial to accurately reflect the steep changes of thrust and mass flow rate
of the booster. The use of a lower number of collocation points would result in a mis-interpretation of the
table-data since the steep changes would not be accurately captured. A solution to this problem may be the
substitution of a different function for the table data; for example Bryson18 uses hyperbolic trigonometric
functions to model near-step discontinuities in the transonic region for aircraft optimal control problems.

IV. Conclusion

GPOPS was well suited for solving this complex multi-stage highly constrained boost and hypersonic glide
vehicle problem. Run time is vastly improved when table data can be fit to smooth functions. An optimal
solution may be found with the proper implementation of equations of motion and variable constraints.
Determining those bounds at times took finesse most likely due to using the internal auto-scaling function.
Leaving the variable bounds too wide resulted in not finding the optimal solution. With the implementation
of a user-defined auto scaling function or non-dimensionalization that issue may be resolved.

Future work related to this effort may involve HGV model changes to improve aerodynamic table fit, thus
derivative smoothing. As mentioned earlier, user-defined scaling of the dynamic equations would eliminate
the need for auto scaling and ensure that relative weighting of variables in the nonlinear problem solver is
as equivalent as possible. New problems which can be solved with this simulation framework relate to range
safety questions such as maximum glide range footprint and possibly minimization of risk to populated areas.
In addition, the simulation will continue to be used to explore new hypersonic glide guidance methodologies
and to evaluate their feasibility while minimizing different cost functions.
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